PallyCon License Token Guide V1.0

Overview {#intro}

There are two types of methods for issuing multi-DRM (FPS, Widevine, PlayReady, NCG)

licenses from PallyCon cloud server.
1. Callback type

o When PallyCon cloud server receives license request from multi-DRM client,
it first checks service site’s callback page to see if the user has valid
permissions.

o In the case of a request from an authorized user, the service site returns
information such as authentication, usage rights (unlimited, fixed period) and
various security options to the PallyCon cloud server through the callback
web page.

o PallyCon cloud server receives the response from the callback page and

issues the license to the client.
2. Token type

o When a multi-DRM client tries to play DRM content, the client requests a
token to the service site in order to acquire DRM license. The service site
verifies that the user requesting the token has permission to the content, and
then generates a token data according to the specification.

o The service site can set usage rights (expiration date or unlimited) and
various security options inside of the token data. The generated token is
delivered to the client as response.

o When a client requests a license with a token, the PallyCon cloud server

validates the token and issues a license.

This document describes the second method, the specification of license token. Please

refer to License Callback Guide if you want callback type integration.

Step-by-step instructions and sample code for how to generate tokens can be found

in the License Token Tutorial documentation.

Token License Issuance Flow {#workflow}

End user (Client) Content Service Site PallyCon Cloud Server

Login to service site

Authenticate user

.~

‘Send available content list

Select content to play

.......

.

opt [License Token Integration]

Request token

Authorize and create license token

.

Send license token

Request DRM license with token

Verify_t_c_>!<_e:n
- .
Issue DRM license
PIayback_ _c_qp.tent
O NEPE ’
End user (Client) Content Service Site PallyCon Cloud Server

(1) Request a token to service site
o Client requests its service site for a token to playback DRM content.
(2) Token generation (see Specification below)

e The service site checks the request received from the client and generates a token
if the user has permission to use the content.
e Token includes information such as Content ID, user ID, timestamp, and license

rules.
(3) Token transfer

e The service site returns the generated token to the client as a response.

The creation of the token and the request / response function are not provided by

PallyCon. The service site should implement these functions according to this guide.
(4) Request for a license

e The client places the received token(baseé4 string) in pallycon-customdata-v2 and

requests license to PallyCon cloud server.

For licensing requests through CustomData, please refer to the Multi-DRM License
Integration Guide or Client SDK Guide.

(5) Issuing a license

o PallyCon cloud server validates the token and issues a license according to the

rules in the token.

Token Proxy Type License Issuance Flow

Token-based license issuance can also be handled through a proxy server at the service

site, as shown below.

End user(Client) Content Service Site PallyCon Cloud Server

Login to service site

=

Authenticate user

Send available content list

Select content to play

.~

DRM license request (challenge + custom data)

opt [Token proxy integration]

Authorize user and create token

.

Request license with challenge and token

Verify|token

Issue DRM license

Response DRM license

Playback content

End user(Client) Content Service Site PallyCon Cloud Server

(1) Request DRM license to proxy server

e Aclient requests a DRM license to a proxy server of the service site for DRM
content playback.

e The client calls the URL of the proxy server instead of PallyCon license server URL
by DRM LA_URL configuration. The User ID and Content ID may be sent via
custom header or URL parameter of the license request.

e License request data sent to the proxy server include challenge data generated by
the client’s DRM module.

(2) Authorize the user and create token

e Service site checks if the user has a right for the content using the custom data

sent to the proxy server.

e The proxy server generates a license token with DRM license rules for the service’s

business model and security policy.
(3) Request DRM license to PallyCon server

e The proxy server requests a DRM license to PallyCon license server with the
generated token and the license challenge data sent from the client.

e PallyCon server validates the token and issues DRM license using the challenge
data.

(4) Response license and playback content

e The proxy server delivers the DRM license data issued by the PallyCon license
server to the client.

o The client player starts playing content using the delivered DRM license.

Token Generation Specification {#token-json}

e The service site generates the following JSON token for the request from the
client and sends the baseé64 encoded string as the response.

e You can test generating token by entering key values of the following specification
in DevConsole page of PallyCon site.

Token JSON Format

"drm_type": "<drm type string>"

"site_id": "<site id string>"

"user_id": "<user id string>"

"cid": "<content id string>"

"policy": "<base64(aes256(token policy for license generation))>"

"timestamp": "<token validity start time (GMT) as yyyy-mm-ddThh:mm:ssZ>
"hash": "<base64(sha256(hash message format))>"

Name Value Required Description

https://sample.pallycon.com/dev/devconsole/customData.do?lang=en#create-token

Name

drm_type

site_id

user_id

cid

policy

timestamp

hash

Value

string

string

string

string

base64
encoded

string

string

base64
encoded

string

Required

No

Yes

Yes

Yes

Yes

Yes

Yes

Description

Type of DRM (“NCG”, “Widevine”,
“PlayReady”, “FairPlay”), case sensitive,
Default : “PlayReady”

Service Site ID which is issued by PallyCon

Console

End-user’s ID which is managed by the
service site. Input “LICENSETOKEN" if there

is no user ID.

Unique ID of the content. The CID is used in
DRM content packaging as well. (Max 200

bytes alphanumeric string)

Token Policy in JSON (refer to specification)
which is encrypted by AES256 and encoded
as Baseb4 string.

Token validity start time (usually current time)
as 'yyyy-mm-ddThh:mm:ssZ’(GMT). Token is
valid for 600 seconds after the timestamp.

(can be adjusted on Console site)

Hash message (refer to specification) which is
hashed by SHA256 and encoded as Base64

string.

Value of drmType should be entered exactly in case according to the specification.

Token JSON example

"drm_type" :"Widevine"

"site_id"
"user_id"

"cid"

"ABCD"

"LICENSETOKEN"

"sample-content-id-0123"

"policy" :"uZOALHJDHAZKc9pICii6Hog46frSIl+to/WbfB8uqliQVjGwKOLw400onRM743

"timestamp”

"2018-04-14T723:59:59Z2"

"hash" : "QkM4NDVGMDMxRUE4MDMONUMzQUE4MTgyMTA4QTQ2QjQyNEFBNTJCNkQ1QjhGODg

Note:

The token and hash strings shown in the above example are not valid data. They are
for reference only. For practical application, use the values generated according to

this specification.

Example of Token String

e The below string is the result of Base64 encoding for the above JSON example.

ewogICAg40CcZHJtX3R5cGXigJB640CdV21kZXZpbmXigJOsCiAgICDigJxzaXR1X21k4o0CdOuK

Token Policy JSON Format {#token-policy-json}

e Encrypt the JSON value configured in the following format with AES256, and set
the Base64 encoded string as the ‘policy’ value of the Token JSON.
e For AES256 encryption method, refer to specifications.

"playback_policy": {
"limit": <true|false>,
"persistent”: <true|false>,
"duration" : <int(seconds)>,
"expire_date": "<license expiry time (GMT) as yyyy-mm-ddThh:mm:ssZ>
Iy
"security_policy": {
"hardware_drm": <true|false>,
"output_protect”: {
"allow_external_display" : <true|false>,
"control_hdcp": <0|1]|2>
)
"allow_mobile_abnormal_device" : <true|false>,
"playready_security_level": <150|2000>
¥
"external_key": {
"mpeg_cenc": {
"key_id" : "<hex-string>",
"key" : "<hex-string>",

"iv" "<hex-string>"

"hls_aes"
"key" "<hex-string>"
"iv" "<hex-string>"
"neg”

"cek" :"<hex-string>"

Name Value

playback_policy json

security_policy json

external_key json

Required

No

No

No

Description

license rules related with playback (refer to

spec)

license rules related with security (refer to

spec)

Uses external content key to generate

license. (refer to spec)

playback_policy {#playback-policy}

Name Value
limit boolean
persistent boolean
duration number

Required

No

No

Select

Description

whether playback period is limited (default:
false)
true : limited playback period, false :

unlimited

whether the license is persistent. (default:
false)
true : keep license, false : remove license

after play(for streaming)

duration of playback (unit: second).
‘expire_date’ is ignored if ‘duration’ is set.
‘limit’ should be true to apply this setting.

Name Value Required

expire_date string Select

Description

date of license expiration, GMT Time ‘yyyy-

mm-ddThh:mm:ssZ’ ‘limit’ should be true to

apply this setting. This setting cannot be

used with ‘duration’.

security_policy {#security-policy}

Name

hardware_drm

output_protect

allow_mobile_abnormal_device

playready_security_level

Value

boolean

json

boolean

number

Required Description

No

No

No

No

security_policy.output_protect {#output-protect}

Name Value

allow_external_display = boolean

control_hdcp number

external_key {#external-key}

Required

No

No

Whether hardware DRM
is required.(default: false)
valid for CENC (Widevine

Modular) contents only

settings for external

display (refer to spec)

whether rooted device is

allowed (default: false)

Security level of
PlayReady DRM,
150,2000 (default: 150)

Description

Whether external display is
allowed. (default: false) valid for
NCG DRM only

Setting for applying HDCP.
(default: 0)
O:NoHDCP,1:HDCP1.4,2:
HDCP 2.2

Name Value Required
mpeg_cenc json No
hls_aes json No
ncg json No

Description

CENC external key setting for
PlayReady/Widevine (refer to spec)

HLS AES external key setting for FairPlay

Streaming (refer to spec)

NCG DRM external key setting (refer to spec)

external_key.mpeg_cenc {#external-key-cenc}

Name Value Required

) hex-
key_id) No
string
hex-
key) No
string
hex-
Y) No
string

Description

Key ID for DASH CENC
packaging(PlayReady/Widevine). 16byte hex string

Key for DASH CENC packaging. 16byte hex string

IV for DASH CENC packaging. 16byte hex string

external_key.hls_aes {#external-key-aes}

Name Value Required

hex-

key) No
string

. hex-

iv i No
string

Description

Key for HLS Sample AES packaging(FairPlay
Streaming). 16byte hex string

IV for HLS Sample AES packaging. 16byte hex string

external_key.ncg {#external-key-ncg}

Name Value Required Description

cek hex-string No

Token Policy JSON Example

CEK for NCG packaging. 32byte hex string

For basic integration test, refer to the below simple token policy. It will generate
streaming license with 5 minutes of playback time limit.

{

"playback_policy": {
“limit": true,
"persistent”: false,
"duration” : 300

}

}

The below sample has more rules to show the full specification.

"playback_policy" :{
“limit" :true,
"persistent" :true,
"duration" :3600,
"expire_date":"2018-04-20T23:59:59Z2"
e
"security_policy":{
"hardware_drm" :true,
"output_protect": {
"allow_external_display"” :false,
"control_hdcp" :1
15
"allow_mobile_abnormal_device" :false,
"playready_security_level" :150
IE
"external_key": {
"mpeg_cenc": {

"key_id" : "30313233343536373839616263646566",
"key" : "30313233343536373839616263646566",
"iv" : "30313233343536373839616263646566"
},
"hls_aes" : {
"key" : "30313233343536373839616263646566",
"iv" : "30313233343536373839616263646566"
},
"ncg” :{
"cek" :"30313233343536373839616263646566303132333435363738396162
}

SHA256 Hash Message Format {#hash-message}

o The hash message is used to verify the integrity of the entire token JSON value

and should be generated as follows:

base64(sha256(<site access key> + <drm type> + <site id> + <user id> + <c

1. Generate a string by concatenating the values of the access key of the service site
and the values excluding the ‘hash’ field of the token JSON in order. Access key
can be found on PallyCon Console site.

2. Generate the final hash message string by base64 encoding the sha256 hash value
of the string created above.

The resulting value of the sha256 hash function must be entered into the baseé64

function as a byte array type, not as a string.

SHA256 Hash Message Example

Step 1. origin string
<Access Key>WidevineABCDLICENSETOKENsample-centent-id-0123uZ@ALHJDHdAZKc9pIC

Step 2. sha256 + base64 string (final result)
QkMANDVGMDMxRUE4MDMONUMzQUE4MTgyMTA4QTQ2QjQyNEFBNTJCNkQ1QjhGODgTNUETMDI2NjQ

AES256 Encryption {#aes256}

e AES256 Encryption/Decryption should be processed as below using site
authentication key which is created by ‘Service Request’ on PallyCon Console site.
(The key can be found on PallyCon Console’s settings page)

e You can test AES256 encryption / decryption from the DevConsole page on the
PallyCon site.

AES256 Encryption

- mode : CBC

- key : 32 byte (Site key from PallyCon Console site)
- iv : 16 byte (0123456789abcdef)

- padding : pkcs7

https://sample.pallycon.com/dev/devconsole/encDec.do?lang=en#aes

